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We report a significant enhancement of diffusion potential in uncharged membranes with polariz-
able nanopores in comparison with uncharged dielectric membranes. The electric field generated by
diffusion of ions with different mobilities induces non–uniform surface charge. It results in the Don-
nan potentials, which contribute to the total membrane potential. The calculations on the basis of
modified Space–Charge model are in good agreement with experiments in KCl and NaCl solutions.
The enhanced sensitivity of membrane potential to ion mobilities ratio, electrolyte concentration,
and pore size can be advantages for applications in electrochemical sensing and design of nanofluidic
devices.

The understanding of ion transport in nanopores
and nanochannels is of fundamental importance in
various areas of science and technology, such as sep-
aration and purification [1], energy conversion [2],
chemical sensors [3], and cell physiology [4]. Nowa-
days, a lot of research is focused on the develop-
ment of smart nanopores and nanochannels with
tunable ion transport. The latter is realized by
combining the pore design strategy (geometry and
surface chemical modification) with external stim-
uli, such as transmembrane potential, solution pH,
temperature, light, etc. [5]. The ion transport
through charged/uncharged membranes separating
electrolytes with different concentrations has received
much attention of researchers in a recent decade in
various contexts including the design of nanofluidic
devices [6], power generation from salinity gradients
[7], potentiometric sensing [8], asymmetric diffusion
transport [9], and osmotic flow generation [10].

A new class of membranes containing gold nan-
otubules that span a complete thickness of a porous
polymeric support was suggested in [11]. It was shown
that their selectivity can be reversible switched from
anion to cation by changing the potential applied to
the conductive membrane surface. Note that when
charged species are transported through a nanopore
with polarizable conductive walls, they can induce
a surface charge, and thus alter the pore transport
characteristics. The induced–charge electrokinetic
phenomena are actively investigated nowadays [12]
due to potential applications in microfluidic pumping
and mixing [13], particle manipulation [14], capaci-
tive deionization [15], and control of ionic transport
in nanochannels [16].

The ionic permselectivity of a nanoporous mem-
brane can be assessed by measuring the potential dif-
ference at zero current, which appears between two
electrolyte solutions with different concentrations sep-
arated by the membrane [17, 18]. The membrane
potential is usually represented as a sum of Donnan
potentials arising from equilibrium between diffusion
and electric forces at the membrane/solution inter-
face, and diffusion potential associated with differ-

ent mobilities of ions diffusing along the concentration
gradient [19]. The contribution of Donnan potentials
is dominant for highly charged membranes, while the
contribution of diffusion potential can be significant
for moderately charged membranes at large concen-
tration gradients and/or ion mobilities ratio. For an
uncharged membrane in 1–1 electrolyte solution, the
diffusion potential is given by [20]

∆Φ =
RgT

F

D − 1

D + 1
ln
CL

CR
, (1)

where Rg is the ideal gas constant, T is the temper-
ature, F is the Faraday constant, CL and CR are the
electrolyte concentrations, and D = D+/D− is the
ratio of ion diffusion coefficients (or mobilities). The
diffusion potential is zero when D = 1, while it coin-
cides with the Nernst potential when D → 0 or ∞.

In this Letter, we show both theoretically and ex-
perimentally that the diffusion potential of an un-
charged nanopore with polarizable conductive walls
can be greatly enhanced in comparison with non–
polarizable case described by Eq. (1). It occurs due
to induction of surface charge in the electric field gen-
erated by diffusion of ions with different mobilities.

Theoretical model. A membrane is modelled as an
array of cylindrical pores of length L and radius R,
which connect two reservoirs with 1–1 electrolyte of
concentrations CL and CR. The flow and ion trans-
port are described by the Space–Charge model de-
rived from Navier–Stokes, Nernst–Planck, and Pois-
son equations [21]. We introduce characteristic scales
of radial R and axial L lengths, concentration C0 = 1
mM, electric potential RgT/F , ion fluxes D+C0/L,
velocity D+/L, pressure C0RgT , and surface charge
density εε0RgT/FR. Here εε0 is the dielectric con-
stant. The dimensionless potential ϕ, ion concentra-
tions c±, and pressure p are written as [21]

ϕ = φv(x) + ψ(r, x), c± = cv(x) exp(∓ψ(r, x)),

p = pv(x) + 2cv(x)cosh(ψ(r, x)).

The function ψ satisfies the Poisson equation
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with boundary conditions ∂ψ/∂r(0, x) = 0 and

ψ
(
1, x) = ϕs − φv(x) (const. surface potential) (3)

or
∂ψ

∂r
(1, x) = σs (const. surface charge). (4)

Here λ =
√
εε0RgT/2F 2C0/R is the dimensionless

Debye length. The virtual variables φv, cv, pv are
found by solving the ODE system(

dpv
dx

,
1

cv

dcv
dx

,
dφv
dx

)T

= L
(
JV , JI , JC

)T
, (5)

where JV is the volume flux (velocity), JI = J+ + J−
is the ion flux, JC = J+ − J− is the ionic current
(all fluxes are dimensionless and cross–sectionally av-
eraged), while L is the symmetric 3×3 matrix, which
coefficients Lij(x) are calculated using the solution
ψ(r, x), see Supplementary Material [22]. The mem-
brane potential is measured at zero current JC = 0
and equal pressures in both reservoirs. In this case,
system (5) becomes

dpv
dx

= L11JV + L12JI ,
1

cv

dcv
dx

= L12JV + L22JI ,

dφv
dx

= L13JV + L23JI . (6)

The corresponding boundary conditions are

x = 0 : pv = −2cL, cv = cL, φv = 0, (7)

x = 1 : pv = −2cR, cv = cR, φv = ∆ϕ,

where ∆ϕ is the dimensionless potential difference be-
tween the reservoirs (membrane potential).

We assume that the conductive nanopore wall is
ideally polarizable and there is no charge exchange
between the nanopore wall and electrolyte. The po-
larization by electric field, which develops inside the
pore, causes the redistribution of surface charge. In
this case, the floating boundary condition should be
used [16]: ∫ 1

0

∂ψ

∂r
dx = σt. (8)

Here σt = σT (εε0RgT/FR)−1 is the dimensionless to-
tal surface charge density, while the dimensional total
surface charge is given by σT 2πRL.

In this Letter, we propose a method of solving the
presented model. To the best of our knowledge, this is
the first attempt of applying the Space–Charge model
to nanopores with polarizable walls. The difficulty
lies in solving Eq. (2) with boundary condition (3).
The virtual potential φv(x) is found by integration
of system (6) with coefficients Lij(x), which in turn
depend on the solution ψ(r, x) of problem (2), (3). It
makes the system strongly coupled and non–linear.

Let us express dx = dcv(cv(L12JV + L22JI))−1

from the second equation in (6) and substitute it into

the first and third equations. Integration of resulting
equations (6) over the pore length with the help of
boundary conditions (7) gives∫ cR

cL

L11J + L12

cv(L12J + L22)
dcv + 2(cR − cL) = 0, (9)

JI =

∫ cR

cL

dcv
cv(L12J + L22)

, (10)

φv(cv) =

∫ cv

cL

L13J + L23

cv(L12J + L22)
dcv, (11)

where J = JV /JI . It follows from (2), (3), and (11)
that one can write ψ = ψ(r, cv), φv = φ(cv), Lij =
Lij(cv), see also [21, 22].

The calculation is performed as follows. For a
non–polarizable dielectric nanopore with constant sur-
face charge density σs, problem (2), (4) is solved
numerically for a set of successive values cv = cvi,
i = 0, . . . , n, where cv0 = cL, cvn = cR. Then the
ratio of fluxes J = JV /JI is found numerically from
(9), and the ion flux JI is obtained from (10). The
potential difference between reservoirs ∆ϕ = φv(cR)
is determined from (11), while the virtual variables
are found by integration of (6), (7). For a polar-
izable conductive nanopore with constant total sur-
face charge density σt, the surface potential ϕs should
be determined in order to satisfy the floating bound-
ary condition (8). In this case, problem (2), (3) is
solved for each cvi at fixed ϕs and J . Note that
φv(cv0) = φv(cL) = 0. The value φv(cvi) is found
iteratively starting from φv(cv,i−1) and repeating the
solution of (2), (3) followed by application of (11).
The whole calculation is performed iteratively to find
the fluxes ratio J from (9). Then JI is calculated from
(10) and virtual variables are obtained by integration
of (6), (7). It allows to find ψ(r, x) = ψ(r, cv(x))
and finally calculate the integral in the left–hand side
of (8). The whole procedure is iterated to find the
surface potential ϕs, with which Eq. (8) is satisfied.
Note that when solving the Poisson equation (2), the
value of ψ at r = 0 should be determined in order to
satisfy condition (3). The initial approximation for it
is found from analytical solution derived in [23].

For a non–polarizable and uncharged (σ = 0)
nanopore, the dimensional potential, concentrations,
and pressure do not depend on r, and can be deter-
mined analytically [18]:

Φ =
RgT

F

D − 1

D + 1
ln
CL

C±
, (12)

C± = CL + (CR − CL)
x

L
, P = 0.

Membrane preparation and potential measure-
ment. To validate the predictions of theoretical model
experimentally, we have synthesized membranes with
dielectric as well as conductive nanoporous structure.
The membranes are prepared from NafenTM alumina
nanofibers supplied by ANF Technologies (Estonia) in
the form of blocks. The diameter of a single nanofiber
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FIG. 1: The cross–sectionally averaged potential (a), con-
centrations (b), pressure (c), and surface charge density (d)
for non–polarizable (σ = 0, dashed curves) and polarizable
(σT = 0, solid curves) nanopores in aqueous NaCl solution.
R = 8 nm, L = 400 µm, CL = 10 mM, CR = 1 mM.

is 10–15 nm, and the length is up to 100 mm.
The nanofibers are dispersed in deionized water (the
weight ratio of Nafen:water is 1:200) and agitated
with a magnetic stirrer for 30 minutes followed by 15
minutes of ultrasonic treatment (Sonics & Materials
VC–505, USA). The suspension is filtered through the
rough Teflon filter (average pore size of 0.6 µm) and
dried in air. The membrane is sintered at 800 oC dur-
ing 4 hours to ensure its structural stability in aque-
ous solutions. The produced membrane is a circular
disc with the diameter of ∼40 mm and thickness of
∼400 µm. Chemical vapor deposition (CVD) is used
to form conductive carbon layers on the nanofibrous
membrane structure. The synthesis is conducted in
a homemade reactor at 900 oC (heating rate of 20–
30 oC/min) in propane/nitrogen mixture (1/15) with
the total flow rate of 4000 cm3/min during 60 seconds.
The sample is slowly cooled to 150 oC in the atmo-
sphere of nitrogen. The samples with and without
deposited carbon will be referred to as C–Nafen mem-
brane and Nafen membrane, respectively. The dielec-
tric Nafen membrane is characterized by the porosity
of 75 %, specific surface area of 146 m2/g, and max-
imum of pore diameter distribution curve at 28 nm.
The corresponding parameters of conductive C–Nafen
membrane are 62 %, 107 m2/g, and 16 nm [24]. Both
types of membranes are hydrophilic.

The membrane potential is measured in KCl and
NaCl aqueous solutions in a laboratory made electro-
chemical cell. It consists of two half–cells, between
which the membrane is clamped. In each half–cell,
reference 4.2 M Ag/AgCl electrode is located. Elec-
trodes are connected to the potentsiostat PI–50Pro
(Elins, Russia), which measures the cell EMF. First,
the solution with fixed concentration CR is placed in
both half–cells and kept at room temperature of 25 oC

FIG. 2: The potential (a), concentrations (b), pressure (c),
and osmotic velocity (d) for a polarizable nanopore with
σT = 0 in aqueous NaCl solution. R = 8 nm, L = 400 µm,
CL = 10 mM, CR = 1 mM.

during 12 hours. The measurements are performed by
successively increasing the electrolyte concentration
in the left half–cell. At each step, the system is al-
lowed to equilibrate during 30 min before the mea-
surement is made. After each series of experiments,
the membrane is placed in deionized water for 24
hours to remove the electrolyte solution from the
pores. More information about membrane prepara-
tion and potential measurements can be found in [24].

Results and discussion. The comparison between
non–polarizable and polarizable uncharged nanopores
is shown in Fig. 1 for NaCl aqueous solution with
D+ = 1.33 · 10−9 and D− = 2.03 · 10−9 m2/s. In the
former case described by Eq. (12), the concentrations
of cations and anions coincide. The potential decrease
results in the electric field E = −∇Φ, which speeds
up the slower diffusing cation and retards the faster
diffusing anion to make the total ion fluxes equal. In a
polarizable pore, this electric field induces the surface
charge, which changes almost linearly in the direction
from the pore entrance (x/L = 0) to the pore exit
(x/L = 1), while keeping the total surface charge σT
zero, see Fig. 1 (d). It results in the higher concen-
tration of cations (anions) at negatively (positively)
charged part of the pore, Fig. 1 (b). The separa-
tion of charge induces the Donnan potentials at the
pore entrance and exit, which both contribute to the
enhancement of membrane potential in comparison
with non–polarizable pore, Fig. 1 (a). It can be seen
from Fig. 2 (a) that the surface potential is constant
(−2.7 mV), while the potential increases (decreases)
in those regions of pore, where the concentration of
cations (anions) is higher. The separation of charge
also results in osmotic pressure jumps at the pore en-
trance and exit, see Figs. 1 (c) and 2 (c). They in
turn induce the osmotic flow in the direction of higher
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FIG. 3: Membrane potential of Nafen (blue) and C–Nafen
(red) membranes in KCl (a) and NaCl (b) aqueous so-
lutions. Experimental data (points), calculations for un-
charged non–polarizable (blue) and polarizable (red) pores
(dashed curves), fitting of experimental data (solid curves),
ideal anion selectivity (solid black line). Error bars, 1 s.d.

TABLE I: Experimental cases with fitted values of σ
(Nafen membranes) or R and σT (C–Nafen membranes).

Electrolyte Aqueous KCl Aqueous NaCl

Membrane Nafen C–Nafen Nafen C–Nafen

CR, mM 1 0.1 1 1

R, nm 14 8.8 14 9.4

σ or σT , mC/m2 0.329 0.039 0.128 0.045

salt concentration, Fig. 2 (d). The higher concentra-
tion of cations (anions) near the pore entrance (exit)
results in the decrease (increase) of velocity in the
near–wall region due to the presence of electric field.
The opposite situation is observed at the center since
the total volume flow rate is constant along the pore.

The calculated membrane potentials of uncharged
non–polarizable (σ = 0, R = 14 nm) and polar-
izable (σT = 0, R = 8 nm) membranes in KCl
and NaCl solutions are shown in Fig. 3 by dashed
curves. The induced–charge enhancement of diffu-
sion potential for KCl solution with almost equal
ion diffusion coefficients (D+ = 1.96 · 10−9 m2/s,
D+/D− = 0.96) is quite significant (more than 16
times at log(CL/CR) = 3). For NaCl solution, the
enhancement is around 2.6 times at the same concen-
tration contrast.

The theoretical results are well supported by the
experimental data. The measurements for Nafen
membrane were performed at pH = 9.1 in KCl solu-
tion and pH = 8 in NaCl solution, which correspond
to the point of zero charge for alumina surface [25, 26].

FIG. 4: The effect of concentration CR (a) and pore radius
R (b) on the membrane potential in NaCl aqueous solution
for σT = 0 (blue curves). Membrane potential for σ = 0
(dashed line) and ideal anion selectivity (solid black line).
The effect of diffusion coefficients ratio on membrane poten-
tial (c) for uncharged non–polarizable (dashed curves) and
polarizable (solid curves) nanopores, R = 8 nm, CR=0.1
mM.

The values of surface charge density σ obtained by fit-
ting of experimental data to the theoretical model of
non–polarizable nanopore with R = 14 nm are pre-
sented in Table I. They are rather low, so the fitted
curves only slightly deviate from those corresponding
to σ = 0.

For C–Nafen membrane with conductive carbon
surface, the adsorption of alkali metal cations on the
defects of carbon structure can occur and modify the
surface charge [24, 27]. To minimize this effect, low
electrolyte concentrations were used: CR = 0.1 mM
for KCl and CR = 1 mM for NaCl. In this case,
the experimental data were fitted to theoretical model
of polarizable nanopore to obtain the total surface
charge density σT and pore radius R, see Table I. The
obtained values of σT are positive but rather small,
while the R values are in good agreement with low
temperature nitrogen adsorption data (8 nm) [24]. So,
the fitted curves are close to those of fully uncharged
(σT = 0) polarizable membranes in Fig. 3.

The diffusion potential of an uncharged non–
polarizable membrane depends only on the ratio of
concentrations and ion diffusion coefficients, see Eq.
(1). In the case of membrane with polarizable pores,
the situation is strikingly different. Fig. 4 (a) shows
that the enhancement of membrane potential becomes
stronger with decreasing the concentration CR. The
calculations reveal that the variation of averaged po-
tential along the pore becomes smaller, while the Don-
nan potentials at the pore entrance and exit become
larger when CR decreases at fixed ratio CL/CR, see
also Fig. 1. At smaller concentrations, the Debye
length is larger, which means a stronger overlap of
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electric double layers created by the induced surface
charge. The same effect can be achieved by decreasing
the pore radius, see Fig. 4 (b). The membrane poten-
tial shows a significant increase when R decreases, but
even at large R its enhancement is quite noticeable in
comparison with the non–polarizable case.

The effect of ion diffusion coefficients ratio on the
membrane potential is shown in Fig. 4 (c). For both
non–polarizable and polarizable pores, ∆Φ = 0 when
D = D+/D− = 1, while it approaches the Nernst po-
tential when D → 0, see also Eq. (1). In the range
0 < D < 1, a significant enhancement of diffusion po-
tential in a polarizable pore is observed. It becomes
larger with increasing the concentration contrast. Es-
pecially unusual is the strong rise of membrane po-
tential magnitude near D = 1. It means that a very
small difference between diffusion coefficients can re-
sult in a large change of membrane potential. This
conclusion is confirmed by the experimental data in
KCl solution, see Fig. 3 (a). Note that at the same
ratio of smaller to larger diffusivity, the magnitude of
membrane potential is the same, but its sign is nega-
tive when D+ < D− and positive when D+ > D−.

To summarize, we have reported a significant
enhancement of diffusion potential in polarizable

nanoporous membranes in comparison with un-
charged dielectric membranes. The Space–Charge
model is modified to allow the description of ion trans-
port in a cylindrical pore with constant surface poten-
tial. It is shown that the electric field generated by
diffusion of ions with different mobilities induces a
non–uniform surface charge, which results in charge
separation inside the nanopore. The correspond-
ing Donnan potentials appear at the pore entrance
and exit leading to the substantial increase of mem-
brane potential in comparison with fully uncharged
nanopore. The theoretical findings are confirmed ex-
perimentally by measuring the membrane potential
in dielectric and conductive nanoporous membranes
using KCl and NaCl aqueous solutions. The enhance-
ment effect becomes stronger with decreasing the elec-
trolyte concentration and pore radius. A strong sensi-
tivity of membrane potential to the ratio of ion diffu-
sion coefficients is demonstrated. The described phe-
nomenon may find applications in precise determina-
tion of ion mobilities, electrochemical sensing, and de-
sign of nanofluidic devices for flexible control of ionic
transport at the nanoscale.
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